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Theorem (Foreman—Rudolph—Weiss, 2011)
The isomorphism relation for all ergodic measure-preserving
transformations is not Borel.

Theorem (Foreman—Rudolph—Weiss, 2011)
The isomorphism relation for all rank-one transformations is Borel.

Fact
» Every rank-one transformation is uniquely ergodic.

» The class of all rank-one transformations is a dense Gg in the
Polish space of all measure-preserving transformations.
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Cantor Systems

Theorem (Deka—Garcia-Ramos—Kapsrzak—Kunde—Kwietniak,
2023+)

The topological conjugacy relation for all minimal Cantor systems
is not Borel.

Theorem (G.—Hill, 2016)
The topological conjugacy relation for all rank-one subshifts is
Borel bireducible with Egp.

Problem (Weiss): Characterize all (minimal) Cantor systems which
are conjugate to a rank-one subshift.

Question: Is the class of all rank-one subshifts a dense Gg in the
Polish space of all Cantor systems?
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Fig. 2.1.3: End of Stage 1

Carole Agyeman-Prempeh: Chacon's transformation

Fig. 2.1.2: Intermediate step of Chacon’s process at Stage 1
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Fig. 2.1.4: Subdividing tower-1 and stacking middle portion at Stage 2

Step B
* Step A
1427 1627
2027 22127
827 1027
227 a1
49 1427 16127 3
23 2027 2207 819
29 827 1027 49
0 227 a1 2 —t

89 26127

Fig. 2.1.5: Intermediate steps in Stage 2



Rank-one transformations: cutting and stacking

1

HHHHHHH

Fig. 2.1.6: End of Stage 2 of the Chacon process



Rank-one transformations: cutting and stacking
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Rank-one subshifts

Chacon’s map
Vnil = VaValvy

vw = 0

vi = 0010

%) 0010 0010 1 0010

v3 = 0010001010010 0010001010010 1 0010001010010
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Rank-one subshifts

Given

» a sequence of positive integers r, > 1 for n € N (cutting
parameter), and

> a doubly indexed sequence of nonnegative integers s, ; for
neNand 0 < i< r, (spacer parameter),

define a generating sequence of finite 0, 1-words recursively by

w = 0
Vh+1 = vn]_sn,l ansn,2 .. ans””n—l Vs

An infinite rank-one word V € 2N is defined as V = lim,_o v, and
the rank-one subshift (Xy/, o) is given by

Xy = {x € 2% : every finite subword of x is a subword of V}

and o(x)(k) = x(k + 1) for all x e Xy and k € Z.
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Rank-one subshifts

Fact: TFAE:
(1) The rank-one subshift (Xy, S) is finite (degenerate).
(2) The infinite rank-one word V is periodic.

(3) The spacer parameter is eventually constant, i.e. there is N
such that for all n,m> Nand 0 <i<r,, 0 <j<rpy we
have s, ; = spm .

Fact: TFAE for a nondegenerate rank-one subshift (Xy, S):

(a) (Xv,S) is minimal.

(b) The spacer parameter is bounded, i.e., there is M such that
forall ne Nand 0 </ < r,, we have s,; < M.
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Rank-one subshifts

Theorem (G.—Ziegler, 2019)

The maximal equicontinuous factor of a rank-one subshift is finite.
In particular, if (X, S) is minimal, then its maximal
equicontinuous factor is Z/pmaxZ, where pyax is the largest p for
which there is n € N such that forall m>nand 0 < i < r,, we
have p | (V| + 5my)-

Theorem (G.—Ziegler, 2020)
A subshift factor of a rank-one subshift (Xy/,S) is either finite or
isomorphic to (Xy, S).
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(G.—Jacoby—Johnson—Leng-Li-Silva-Wu, 2023+)

Let F denote the set of all finite 0, 1-words that start and end with
0.

» For S € F and w € F, we say that w is built from S if there
are vi,...,Vkr1 € S and sy, ..., sk € N such that
w = w1112 .. v 1%y 4.
» A rank-n generating sequence v;; for ie Nand 1 </ < n;,
where 1 < n; < n, satisfies
> v =0forall1<j<ng
> Vip11 is built from S§; = {vi1,..., vin} starting with v; 1
> for 2 < j < nj, viz1 is built from S;
» An infinite rank-n word V € 2V is defined as V = lim;_, Vi1
and a rank-< n subshift (Xy, S) is defined similarly as in the
rank-one case.
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Symbolic rank n > 1

A proper rank-n generating sequence v; ; for ie Nand 1 </ < n,

satisfies
» vpj=0forall1<j<n
> Vjy1,1 is built from S; = {vj1,...,v;n} starting with v; 1

» for 2 < j < n, vjy1 is built from §;
» for each 1 < j < n, every word in 5; is used in the building of

Vit1,

Fact: For any n > 1, there is an infinite word V with a proper
rank-(n + 1) generating sequence and no rank-n generating

sequence.



Subshifts of symbolic rank n > 1

Theorem: TFAE for a rank-n subshift (Xy, S):

(a) (Xv,S) is minimal.

(b) V has a proper rank-n generating sequence in which the
spacer parameter is bounded.

Question: What is the relationship between symbolic rank and
topological rank?
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» (Herman—Putnam—Skau, 1992) A Cantor system (X, T) is
essentially minimal if it has a unique minimal subset.

» (Vershik, 1981) If B = (V, E, <) is an essentially simple
ordered Bratteli diagram, then the Vershik map Ag on Xg
defines an essentially minimal Cantor system.

» (HPS, 1992) If (X, T) is an essentially minimal Cantor system
and xp is in the unique minimal set, then there is an essentially
simple ordered Bratteli diagram B = (V, E, <) with xo = Xpin
so that (X, T) is conjugate to the Vershik system (Xg, Ag).

» (Downarowicz—Maass, 2008; Durand, 2010) An essentially
minimal Cantor system (X, T) has topological rank K if K is
the minimal number such that there exists an essentially
simple ordered Bratteli diagram B = (V, E, <) such that
(X, T) is conjugate to (Xg,Ag) and for all i > 1, |V;| < K.
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Topological rank

Theorem (G.—-Li, 2023+)
The following classes are G; subsets of the Polish space of all
Cantor systems:

1.
2.
3.

The class of all essentially minimal Cantor systems;
The class of all minimal Cantor systems;

The class of all essentially minimal Cantor systems of
topological rank < K;

The class of all minimal Cantor systems of topological rank
< K;

The class of all infinite odometers.
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Rank-1 subshifts revisited

Theorem (G.—Li, 2023+)
The class of all (minimal) Cantor systems conjugate to a rank-1
subshift is not Gg.

» The class of all infinite odometers is dense in the space of all
minimal Cantor systems.

» The class of all infinite odometers is Gg.
» The class of all minimal rank-1 subshifts is also dense.

> An infinite odometer is not conjugate to any subshift.

We answer Weiss's question by giving a chacterization of all
minimal Cantor systems conjugate to a rank-1 subshift. The
descriptive complexity of the characterization is apparently Zg.
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Symbolic rank vs. topological rank

Theorem (G.—-Li, 2023+)
Any minimal subshift of finite symbolic rank has finite topological
rank.

Theorem (G.—Li, 2023+; Arbuli—Durand, 2022+)
For any K > 1, there exists a minimal rank-1 subshift whose
topological rank is > K.

Theorem (G.—-Li, 2023+)
There exists a (non-minimal) rank-1 subshift whose topological
rank is not finite.
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Symbolic rank vs. topological rank

Theorem (G.—Li, 2023+)

Every minimal Cantor system of finite topological rank is either an
odometer or conjugate to a minimal subshift of finite symbolic
rank. Moreover, when the system has topological rank K > 1 and
is not an odometer, it is conjugate to a subshift of symbolic rank
< K.

Compare

Theorem (Donoso—Durand—Maass—Petite, 2021)

Every minimal Cantor system of finite topological rank is either an
odometer or conjugate to a minimal S-adic subshift of finite
alphabet rank. Moreover, when the system has topological rank
K > 1 and is not an odometer, it is conjugate to an S-adic
subshift of alphabet rank < K.
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Topological factors of subshifts of finite symbolic rank

Theorem (Golestani—Hosseini, 2022)

A Cantor factor of a minimal Cantor system of finite topological
rank is again a minimal Cantor system of finite topological rank. In
fact, if (X, T) has topological rank K and (Y,S) is a Cantor
factor of (X, T), then the topological rank of (Y,S) is < 3K.

Theorem (Espinoza, 2023)

If a minimal Cantor system (X, T) has topological rank K and
(Y,S) is a Cantor factor of (X, T), then the topological rank of
(Y,S)is < K.

Corollary

A Cantor factor of a minimal subshift of finite symbolic rank is
either an odometer or conjugate to a minimal subshift of finite
symoblic rank.
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Topological factors of subshifts of finite symbolic rank

Theorem (G.—-Li, 2023+)
For any N > 1 there is a minimal subshift of finite symbolic rank
which is not a factor of any minimal subshift of symbolic rank < N.

Theorem (G.-Li, 2023+)

A Cantor factor of a minimal subshift of finite symbolic rank is
either an odometer or is itself a minimal subshift of finite symbolic
rank.

Example If V is the Chacon word, and W is obtained from V by
the substitution 0 — 1 and 1 — 0, then X}y is a minimal subshift
of finite symbolic rank (it has symbolic rank 2).
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Theorem (G.—Li, 2023+)

1. For any infinite odometer (O, +1), there is a minimal subshift
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Other factors of subshifts of finite symbolic rank

Theorem (G.—Li, 2023+)

1. For any infinite odometer (O, +1), there is a minimal subshift
of symbolic rank 2 whose maximal equicontinuous factor is
(0,+1).

2. For any irrational rotation (T, +«), there is a minimal subshift
of symbolic rank 2 whose maximal equicontinuous factor is
(T, +a).
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