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Measure-Preserving Transformations

Theorem (Foreman–Rudolph–Weiss, 2011)
The isomorphism relation for all ergodic measure-preserving
transformations is not Borel.

Theorem (Foreman–Rudolph–Weiss, 2011)
The isomorphism relation for all rank-one transformations is Borel.

Fact

§ Every rank-one transformation is uniquely ergodic.

§ The class of all rank-one transformations is a dense Gδ in the
Polish space of all measure-preserving transformations.
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Cantor Systems

Theorem (Deka–Garcia-Ramos–Kapsrzak–Kunde–Kwietniak,
2023+)
The topological conjugacy relation for all minimal Cantor systems
is not Borel.

Theorem (G.–Hill, 2016)
The topological conjugacy relation for all rank-one subshifts is
Borel bireducible with E0.

Problem (Weiss): Characterize all (minimal) Cantor systems which
are conjugate to a rank-one subshift.

Question: Is the class of all rank-one subshifts a dense Gδ in the
Polish space of all Cantor systems?
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Figure: Carole Agyeman-Prempeh: Chacon’s transformation
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Rank-one subshifts

Chacon’s map
vn`1 “ vnvn1vn

v0 “ 0
v1 “ 0010
v2 “ 0010 0010 1 0010
v3 “ 0010001010010 0010001010010 1 0010001010010

¨ ¨ ¨ ¨ ¨ ¨



Rank-one subshifts

Given

§ a sequence of positive integers rn ą 1 for n P N (cutting
parameter), and

§ a doubly indexed sequence of nonnegative integers sn,i for
n P N and 0 ă i ă rn (spacer parameter),

define a generating sequence of finite 0, 1-words recursively by

v0 “ 0
vn`1 “ vn1

sn,1vn1
sn,2 ¨ ¨ ¨ vn1

sn,rn´1vn

An infinite rank-one word V P 2N is defined as V “ limnÑ8 vn and
the rank-one subshift pXV , σq is given by

XV “ tx P 2Z : every finite subword of x is a subword of V u

and σpxqpkq “ xpk ` 1q for all x P XV and k P Z.



Rank-one subshifts

Given

§ a sequence of positive integers rn ą 1 for n P N (cutting
parameter), and

§ a doubly indexed sequence of nonnegative integers sn,i for
n P N and 0 ă i ă rn (spacer parameter),

define a generating sequence of finite 0, 1-words recursively by

v0 “ 0
vn`1 “ vn1

sn,1vn1
sn,2 ¨ ¨ ¨ vn1

sn,rn´1vn

An infinite rank-one word V P 2N is defined as V “ limnÑ8 vn

and
the rank-one subshift pXV , σq is given by

XV “ tx P 2Z : every finite subword of x is a subword of V u

and σpxqpkq “ xpk ` 1q for all x P XV and k P Z.



Rank-one subshifts

Given

§ a sequence of positive integers rn ą 1 for n P N (cutting
parameter), and

§ a doubly indexed sequence of nonnegative integers sn,i for
n P N and 0 ă i ă rn (spacer parameter),

define a generating sequence of finite 0, 1-words recursively by

v0 “ 0
vn`1 “ vn1

sn,1vn1
sn,2 ¨ ¨ ¨ vn1

sn,rn´1vn

An infinite rank-one word V P 2N is defined as V “ limnÑ8 vn and
the rank-one subshift pXV , σq is given by

XV “ tx P 2Z : every finite subword of x is a subword of V u

and σpxqpkq “ xpk ` 1q for all x P XV and k P Z.



Rank-one subshifts

Fact: TFAE:

(1) The rank-one subshift pXV ,Sq is finite (degenerate).

(2) The infinite rank-one word V is periodic.

(3) The spacer parameter is eventually constant, i.e. there is N
such that for all n,m ą N and 0 ă i ă rn, 0 ă j ă rm, we
have sn,i “ sm,j .

Fact: TFAE for a nondegenerate rank-one subshift pXV ,Sq:

(a) pXV ,Sq is minimal.

(b) The spacer parameter is bounded, i.e., there is M such that
for all n P N and 0 ă i ă rn, we have sn,i ď M.
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Rank-one subshifts

Theorem (G.–Ziegler, 2019)
The maximal equicontinuous factor of a rank-one subshift is finite.
In particular, if pXV ,Sq is minimal, then its maximal
equicontinuous factor is Z{pmaxZ, where pmax is the largest p for
which there is n P N such that for all m ě n and 0 ă i ă rm, we
have p | p|vn| ` sm,i q.

Theorem (G.–Ziegler, 2020)
A subshift factor of a rank-one subshift pXV ,Sq is either finite or
isomorphic to pXV ,Sq.
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Symbolic rank n ě 1

(G.–Jacoby–Johnson–Leng–Li–Silva–Wu, 2023+)

Let F denote the set of all finite 0, 1-words that start and end with
0.

§ For S Ď F and w P F , we say that w is built from S if there
are v1, . . . , vk`1 P S and s1, . . . , sk P N such that

w “ v11
s1v21

s2 ¨ ¨ ¨ vk1
skvk`1.

§ A rank-n generating sequence vi ,j for i P N and 1 ď j ď ni ,
where 1 ď ni ď n, satisfies

§ v0,j “ 0 for all 1 ď j ď n0
§ vi`1,1 is built from Si “ tvi,1, . . . , vi,ni u starting with vi,1
§ for 2 ď j ď ni , vi`1,j is built from Si

§ An infinite rank-n word V P 2N is defined as V “ limiÑ8 vi ,1
and a rank-ď n subshift pXV ,Sq is defined similarly as in the
rank-one case.
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Symbolic rank n ě 1

A proper rank-n generating sequence vi ,j for i P N and 1 ď j ď n,
satisfies

§ v0,j “ 0 for all 1 ď j ď n

§ vi`1,1 is built from Si “ tvi ,1, . . . , vi ,nu starting with vi ,1
§ for 2 ď j ď n, vi`1,j is built from Si
§ for each 1 ď j ď n, every word in Si is used in the building of
vi`1,j

Fact: For any n ě 1, there is an infinite word V with a proper
rank-pn ` 1q generating sequence and no rank-n generating
sequence.



Symbolic rank n ě 1

A proper rank-n generating sequence vi ,j for i P N and 1 ď j ď n,
satisfies

§ v0,j “ 0 for all 1 ď j ď n

§ vi`1,1 is built from Si “ tvi ,1, . . . , vi ,nu starting with vi ,1
§ for 2 ď j ď n, vi`1,j is built from Si
§ for each 1 ď j ď n, every word in Si is used in the building of
vi`1,j

Fact: For any n ě 1, there is an infinite word V with a proper
rank-pn ` 1q generating sequence and no rank-n generating
sequence.



Subshifts of symbolic rank n ě 1

Theorem: TFAE for a rank-n subshift pXV ,Sq:

(a) pXV ,Sq is minimal.

(b) V has a proper rank-n generating sequence in which the
spacer parameter is bounded.

Question: What is the relationship between symbolic rank and
topological rank?



Topological rank

§ (Herman–Putnam–Skau, 1992) A Cantor system pX ,T q is
essentially minimal if it has a unique minimal subset.

§ (Vershik, 1981) If B “ pV ,E ,ĺq is an essentially simple
ordered Bratteli diagram, then the Vershik map λB on XB

defines an essentially minimal Cantor system.

§ (HPS, 1992) If pX ,T q is an essentially minimal Cantor system
and x0 is in the unique minimal set, then there is an essentially
simple ordered Bratteli diagram B “ pV ,E ,ĺq with x0 “ xmin

so that pX ,T q is conjugate to the Vershik system pXB , λBq.

§ (Downarowicz–Maass, 2008; Durand, 2010) An essentially
minimal Cantor system pX ,T q has topological rank K if K is
the minimal number such that there exists an essentially
simple ordered Bratteli diagram B “ pV ,E ,ĺq such that
pX ,T q is conjugate to pXB , λBq and for all i ě 1, |Vi | ď K .
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Topological rank

Theorem (G.–Li, 2023+)
The following classes are Gδ subsets of the Polish space of all
Cantor systems:

1. The class of all essentially minimal Cantor systems;

2. The class of all minimal Cantor systems;

3. The class of all essentially minimal Cantor systems of
topological rank ď K ;

4. The class of all minimal Cantor systems of topological rank
ď K ;

5. The class of all infinite odometers.
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Rank-1 subshifts revisited

Theorem (G.–Li, 2023+)
The class of all (minimal) Cantor systems conjugate to a rank-1
subshift is not Gδ.

§ The class of all infinite odometers is dense in the space of all
minimal Cantor systems.

§ The class of all infinite odometers is Gδ.

§ The class of all minimal rank-1 subshifts is also dense.

§ An infinite odometer is not conjugate to any subshift.

We answer Weiss’s question by giving a chacterization of all
minimal Cantor systems conjugate to a rank-1 subshift. The
descriptive complexity of the characterization is apparently Σ0

5.
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Theorem (G.–Li, 2023+)
Any minimal subshift of finite symbolic rank has finite topological
rank.

Theorem (G.–Li, 2023+; Arbulú–Durand, 2022+)
For any K ą 1, there exists a minimal rank-1 subshift whose
topological rank is ě K .

Theorem (G.–Li, 2023+)
There exists a (non-minimal) rank-1 subshift whose topological
rank is not finite.



Symbolic rank vs. topological rank

Theorem (G.–Li, 2023+)
Any minimal subshift of finite symbolic rank has finite topological
rank.

Theorem (G.–Li, 2023+; Arbulú–Durand, 2022+)
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Symbolic rank vs. topological rank

Theorem (G.–Li, 2023+)
Every minimal Cantor system of finite topological rank is either an
odometer or conjugate to a minimal subshift of finite symbolic
rank. Moreover, when the system has topological rank K ą 1 and
is not an odometer, it is conjugate to a subshift of symbolic rank
ď K .

Compare
Theorem (Donoso–Durand–Maass–Petite, 2021)
Every minimal Cantor system of finite topological rank is either an
odometer or conjugate to a minimal S-adic subshift of finite
alphabet rank. Moreover, when the system has topological rank
K ą 1 and is not an odometer, it is conjugate to an S-adic
subshift of alphabet rank ď K .
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Topological factors of subshifts of finite symbolic rank

Theorem (Golestani–Hosseini, 2022)
A Cantor factor of a minimal Cantor system of finite topological
rank is again a minimal Cantor system of finite topological rank. In
fact, if pX ,T q has topological rank K and pY ,Sq is a Cantor
factor of pX ,T q, then the topological rank of pY ,Sq is ď 3K .

Theorem (Espinoza, 2023)
If a minimal Cantor system pX ,T q has topological rank K and
pY ,Sq is a Cantor factor of pX ,T q, then the topological rank of
pY ,Sq is ď K .

Corollary
A Cantor factor of a minimal subshift of finite symbolic rank is
either an odometer or conjugate to a minimal subshift of finite
symoblic rank.
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Topological factors of subshifts of finite symbolic rank

Theorem (G.–Li, 2023+)
For any N ě 1 there is a minimal subshift of finite symbolic rank
which is not a factor of any minimal subshift of symbolic rank ď N.

Theorem (G.–Li, 2023+)
A Cantor factor of a minimal subshift of finite symbolic rank is
either an odometer or is itself a minimal subshift of finite symbolic
rank.

Example If V is the Chacon word, and W is obtained from V by
the substitution 0 ÞÑ 1 and 1 ÞÑ 0, then XW is a minimal subshift
of finite symbolic rank (it has symbolic rank 2).
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Other factors of subshifts of finite symbolic rank

Theorem (G.–Li, 2023+)

1. For any infinite odometer pO,`1q, there is a minimal subshift
of symbolic rank 2 whose maximal equicontinuous factor is
pO,`1q.

2. For any irrational rotation pT,`αq, there is a minimal subshift
of symbolic rank 2 whose maximal equicontinuous factor is
pT,`αq.



Other factors of subshifts of finite symbolic rank

Theorem (G.–Li, 2023+)

1. For any infinite odometer pO,`1q, there is a minimal subshift
of symbolic rank 2 whose maximal equicontinuous factor is
pO,`1q.

2. For any irrational rotation pT,`αq, there is a minimal subshift
of symbolic rank 2 whose maximal equicontinuous factor is
pT,`αq.



Thank You!


